Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ivana Císařová, ${ }^{\text {a }}$ * Roman Skála, ${ }^{\text {b }}$ Petr Ondruš ${ }^{c}$ and Milan Drábek ${ }^{d}$

${ }^{\text {a }}$ Department of Inorganic Chemistry, Charles University, Hlavova 2030, CZ-12843 Praha 2, Czech Republic, b LAREM, Czech Geological Survey, Geologicka 6, CZ-15200 Praha 5, Czech Republic, ${ }^{\text {c } X \text {-Ray Diffraction Lab, Czech }}$ Geological Survey, Geologická 6, CZ-15200 Praha 5, Czech Republic, and ${ }^{\text {d Experimental }}$ Petrology Lab, Czech Geological Survey, Geologicka 6, CZ-15200 Praha 5, Czech Republic

Correspondence e-mail: cisarova@natur.cuni.cz

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{C})=0.006 \AA$
R factor $=0.024$
$w R$ factor $=0.062$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Trigonal $\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$

Tetrasodium tricarbonatodioxouranate(VI), $\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$, crystallizes in the trigonal space group $P \overline{3} c 1$. Though the symmetry differs from other similar compounds (e.g. the $\mathrm{NH}_{4}^{+}, \mathrm{K}^{+}$and Tl^{+}salts) which are monoclinic, there is a common structure motif consisting of $\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ groups with a trigonal outline when viewed along the shortest $\mathrm{O}-\mathrm{U}-\mathrm{O}$ bond pair. In $\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$, there are three non-equivalent Na atoms; Na 1 (site symmetry $\overline{3}$) and Na 2 (site symmetry 3) are in centres of face-sharing octahedra, which form a chain running parallel to the c axis at each unit-cell corner, whereas the Na3 atom is surrounded by a deformed square pyramid of O atoms, forming edge-sharing triplets. The title compound has also a natural dimorph, namely the recently approved triclinic mineral čejkaite.

Comment

Recently, we have found a natural triclinic compound of $\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$ composition in Jáchymov, the Czech Republic. This natural triclinic material does not form crystals suitable for single-crystal study. We recognized that a compound of the same chemistry but with trigonal symmetry had been described by Douglass (1956), who determined the extinction symbol, unit-cell dimensions and also additional physical parameters. An attempt to prepare a synthetic analogue of our natural triclinic compound failed; instead, we synthesized a trigonal dimorph equivalent to the material of Douglass for which we report a complete structure.

There are chemically similar compounds $-\mathrm{NH}_{4}$ $\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right], \mathrm{K}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$ and $\mathrm{Tl}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$ - for which the crystal structures are known (Graziani et al., 1972; Anderson et al., 1980; Mereiter, 1986; respectively). All these materials crystallize in the monoclinic space group $C 2 / c$. They share the common basic structural motif of $\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ groups with the compound we synthesized. This group is, in our case, built up from the asymmetric unit (Fig. 1) due to the threefold axis and contains three planar CO_{3} triangles sharing one of their edges with the $\mathrm{UO}_{2} \mathrm{O}_{6}$ polyhedron. The lengths of the $\mathrm{U}-\mathrm{O}$ bonds oriented along the direction of the c axis ($\mathrm{U} 1-$ O 1 and $\mathrm{U} 1-\mathrm{O} 2$) are significantly shorter compared to the $\mathrm{U}-\mathrm{O}$ distances in the medial plane of the $\mathrm{UO}_{2} \mathrm{O}_{6}$ polyhedron ($\mathrm{U} 1-\mathrm{O} 11$ and $\mathrm{U} 1-\mathrm{O} 12$) in the compound $\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$. The planes of the CO_{3} triangles attached to the $\mathrm{UO}_{2} \mathrm{O}_{6}$ polyhedron are inclined from the 001 plane. Atoms Na 1 and Na 2 are octahedrally coordinated by O13 atoms. The octahedra share a common face and form a chain of alternating polyhedra around Na 1 and Na 2 running parallel to the c axis and situated at each unit-cell corner. The octahedron around Na 1 is fairly regular, with quadratic elongation of 1.012 and bond-angle s.u. of 6.87°. On the contrary, the polyhedron

Received 5 February 2001

Accepted 5 April 2001
Online 12 April 2001

Figure 1
View of the asymmetric unit of $\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$ with the atomnumbering scheme. Displacement ellipsoids are at the 50% probability (PLATON; Spek, 1999).

Figure 2
Polyhedral presentation of an edge-sharing triplet of NaO_{5} polyhedra.
around Na 2 departs significantly from ideal geometry, which results in quadratic elongation of 1.121 and bond-angle s.u. of 18.78°. The volumes of both octahedra are comparable; the polyhedron around Na 1 has a volume of $19.02 \AA^{3}$ and that around $\mathrm{Na} 217.40 \AA^{3}$. Atom Na 3 has a coordination number of 5; the polyhedron around it can be described as square pyramidal as $\tau=0.15$ (Addison \& Reedijk, 1984). Three of these polyhedra build up edge-sharing triplets (Fig. 4). The shared edge is defined by the atoms $\mathrm{O} 1-\mathrm{O} 2$ and it runs parallel to the c axis (Fig. 2). The overall structure motif is apparent from Fig. 3. Triplets of polyhedra around Na 3 atoms share vertices of their common edges with vertices of

Figure 3
Projection of the crystal structure of $\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$ onto the 100 plane. Note the chain of alternating octahedra around the Na 1 and Na 2 atoms parallel to [001] at the unit-cell edge. Colour-coding of polyhedra, red: $\mathrm{UO}_{2} \mathrm{O}_{6}$ polyhedron; blue: planar CO_{3} triangles; yellow: NaO_{6} octahedra; green: NaO_{5} irregular square pyramid.

Figure 4
Polyhedral presentation of a single layer consisting of the $\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ complex, triplets of polyhedra around Na 3 and octahedra around Na 1 or Na 2 found in the $\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$ viewed down [001]. Colour-coding of polyhedra, red: $\mathrm{UO}_{2} \mathrm{O}_{6}$ polyhedron; blue: planar CO_{3} triangles; yellow: NaO_{6} octahedra; green: NaO_{5} irregular square pyramid.
$\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ complexes adjacent to them in the [001] direction. These complexes, in turn, share edges O 11 - O 12 with laterally neighbouring square pyramids around Na 3 atoms, building up
two-dimensional sheets parallel to 001 typical for this structure. The sheets are stacked along [001] so that the next sheet is rotated by 60° around [001] with respect to the adjacent one. Finally, each of three apical carbonate O 13 atoms from any $\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ complex is shared by the octahedron around either Na 1 or Na 2 (depending on the height of the sheet along [001] in the unit cell) and also makes a vertex of laterally adjacent triplet of polyhedra around Na 3 (Fig. 4). Using the approach of effective coordination numbers (Hoppe, 1979) and the program of Rieder (1993), we calculated effective coordination numbers (ECoNs) for central atoms as U1 = $2.24, \mathrm{Na} 1=6.00, \mathrm{Na} 2=6.12, \mathrm{Na} 3=4.76$ and $\mathrm{C} 1=2.94$; for U 1 and Na 3 polyhedra, these ECoNs depart significantly from their ideal values. This could be ascribed to substantial irregularity of individual polyhedra. Their irregularity results also in bond-valence sums departing from ideal values. Using the data of Brown \& Altermatt (1985) and the program of Wills \& Brown (1999), we calculated bond-valence sums as [central atom, bond valence sum in vu (valance units) and departure in percent from the ideal oxidation state] U1 6.59 [10], Na1 1.074 [7], Na2 1.02 [2], Na3 1.127 [13], C1 4.033 [1].

Experimental

Clear yellow hexagonal prismatic crystals up to 1 mm long of the title compound have been synthesized from synthetic triclinic $\mathrm{Na}_{4}\left[(\mathrm{UO})_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$ powder by recrystallization in sealed silica glass tubes under hydrothermal conditions at a pressure of about 20 MPa and a temperature of 408 K for 3 d . In addition to the crystals of the title compound, we recovered from the tube an orange powdered material which we identified as containing sodium di- and heptauranates.

Crystal data

$\mathrm{Na}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)_{3}\right]$
$M_{r}=542.02$
Trigonal, $P \overline{3} c 1$
$a=9.3380$ (2) \AA 。
$c=12.8170$ (3) \AA
$V=967.89$ (4) \AA^{3}
$Z=4$
$D_{x}=3.720 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans to fill the Ewald sphere
Absorption correction: Gaussian (Coppens, 1970)
$T_{\text {min }}=0.208, T_{\text {max }}=0.617$
22328 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.062$
$S=1.07$
746 reflections
60 parameters

Mo $K \alpha$ radiation
Cell parameters from 10249 reflections
$\theta=1-27.5^{\circ}$
$\mu=17.01 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Bar, yellow
$0.11 \times 0.05 \times 0.05 \mathrm{~mm}$

> 746 independent reflections 615 reflections with $I>2 \sigma(I)$
> $R_{\mathrm{int}}=0.090$
> $\theta_{\max }=27.5^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-12 \rightarrow 12$
> $l=-16 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0358 P)^{2}\right. \\
& +2.8258 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=2.33 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-1.73 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0074 \text { (5) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

U1-O1	1.809 (8)	Na3-O13 ${ }^{\text {ii }}$	2.320 (4)
U1-O2	1.810 (7)	Na3-O11	2.338 (4)
U1-O12	2.379 (4)	$\mathrm{Na} 3-\mathrm{O} 1^{\text {iii }}$	2.486 (5)
U1-O11	2.422 (4)	$\mathrm{Na} 3-\mathrm{O} 2^{\text {iv }}$	2.541 (5)
Na1-O13	2.440 (3)	C1-O13	1.242 (5)
Na2-O13	2.492 (4)	C1-O12	1.303 (7)
$\mathrm{Na} 3-\mathrm{O} 12{ }^{\text {i }}$	2.287 (4)	C1-O11	1.304 (6)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 2$	180.000 (1)	$\mathrm{O} 12^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 11$	70.15 (16)
$\mathrm{O} 1-\mathrm{U} 1-\mathrm{O} 12$	85.88 (10)	$\mathrm{O} 13^{\text {ii }}-\mathrm{Na} 3-\mathrm{O} 11$	155.48 (16)
O1-U1-O11	93.52 (9)	$\mathrm{O} 12^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O} 1^{\text {iii }}$	136.50 (19)
O12-U1-O11	53.67 (12)	$\mathrm{O} 13^{\text {iii }}-\mathrm{Na} 3-\mathrm{O} 1^{\text {iii }}$	110.46 (13)
$\mathrm{O} 12{ }^{\mathrm{i}}-\mathrm{U} 1-\mathrm{O} 11$	67.22 (12)	$\mathrm{O} 11-\mathrm{Na} 3-\mathrm{O} 1^{\text {iii }}$	91.08 (11)
$\mathrm{O} 12^{\mathrm{v}}-\mathrm{U} 1-\mathrm{O} 11$	173.15 (12)	$\mathrm{O} 12^{\mathrm{i}}-\mathrm{Na} 3-\mathrm{O}^{\text {iv }}$	146.30 (18)
$\mathrm{O} 13^{\text {vi }}-\mathrm{Na} 1-\mathrm{O} 13$	96.58 (12)	$\mathrm{O} 13^{\text {iii }}-\mathrm{Na} 3-\mathrm{O} 2^{\text {iv }}$	109.34 (14)
$\mathrm{O} 13{ }^{\text {vii }}-\mathrm{Na} 2-\mathrm{O} 13^{\text {viii }}$	83.99 (15)	$\mathrm{O} 11-\mathrm{Na} 3-\mathrm{O}_{2}{ }^{\text {iv }}$	89.31 (11)
$\mathrm{O} 13^{\text {ix }}-\mathrm{Na} 2-\mathrm{O} 13^{\text {viii }}$	148.55 (15)	$\mathrm{O} 1^{\text {iiii }}-\mathrm{Na} 3-\mathrm{O} 2^{\text {iv }}$	67.4 (2)
$\mathrm{O} 13{ }^{\text {vii }}-\mathrm{Na} 2-\mathrm{O} 13$	81.30 (12)	O13-C1-O12	124.0 (4)
$\mathrm{O} 13{ }^{\text {viii }}-\mathrm{Na} 2-\mathrm{O} 13$	123.64 (16)	O13-C1-O11	123.5 (5)
$\mathrm{O} 13{ }^{\mathrm{x}}-\mathrm{Na} 2-\mathrm{O} 13$	148.55 (15)	O12-C1-O11	112.5 (4)
$\mathrm{O} 12{ }^{\text {i }}-\mathrm{Na} 3-\mathrm{O} 13{ }^{\text {ii }}$	85.84 (15)		
$\begin{aligned} & -x, 1-y,-z ; \text { (v) } 1-y, 1+x-y, z ; \text { (vi) } x-y, x,-z ; \text { (vii) }-y, x-y, z ; \text { (viii) } \\ & x-y,-y, \frac{1}{2}-z ; \text { (ix) }-x+y,-x, z ; \text { (x) } y, x, \frac{1}{2}-z . \end{aligned}$			

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski \& Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Shape Software, 1999).

The Grant Agency of the Czech Republic is acknowledged for support of projects Nos. 205/93/0900, 205/97/0491 and 203/ 99/M037.

References

Addison, A. W. \& Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 13491356.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Anderson, A., Chieh, C., Irish, D. E. \& Tong, J. P. K. (1980). Can. J. Chem. 58, 1651-1658.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Douglass, R. M. (1956). Anal. Chem. 28, 10, 1635.
Graziani, R., Bombieri, G. \& Forsellini, E. (1972). Dalton J. Chem. Soc. Dalton Trans. pp. 2059-2061.
Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Hoppe, R. (1979). Z. Kristallogr. 150, 23-52.
Mereiter, K. (1986). Acta Cryst. C42, 1682-1684.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Rieder, M. (1993). HOPPE. Program for Calculational of MEFIR, ECoN and Mean from FIRs. Faculty of Science, Charles University, Prague, Czech Republic.
Shape Software (1999). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON. Version 1999. Utrecht University, The Netherlands.
Wills, A. S. \& Brown, I. D. (1999). VaList. CEA, France.

[^0]: (C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

